首页> 外文OA文献 >Ore Type based Expert Systems in Mineral Processing Plants
【2h】

Ore Type based Expert Systems in Mineral Processing Plants

机译:选矿厂基于矿石类型的专家系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artificial intelligence (AI) includes excellent tools for the control and supervision of industrial processes. Several thousand industrial applications have been reported worldwide. Recently, the designers of the AI systems have begun to hybridize the intelligent techniques, expert systems, fuzzy logic and neural networks, to enhance the capability of the AI systems. Expert systems have proved to be ideal candidates especially for the control of mineral processes. An expert system based on on-line classification of the ore type has been developed. Self-organizing maps (SOM) are used for pattern recognition of the type of feed. The system has been tested in two concentrators, the Outokumpu Finnmines Oy, Hitura Mine and Outokumpu Chrome Oy, Kemi Mine. The methodology for the development of the ore type based expert system is presented and the preliminary results obtained in the above plants are described.
机译:人工智能(AI)包括用于控制和监督工业过程的出色工具。全球已报道了数千种工业应用。最近,人工智能系统的设计者已开始将智能技术,专家系统,模糊逻辑和神经网络进行混合,以增强人工智能系统的功能。专家系统已被证明是理想的候选人,特别是对于矿物过程的控制。已经开发了基于矿石类型在线分类的专家系统。自组织映射(SOM)用于识别提要类型的模式。该系统已经在两个选矿厂进行了测试,分别是Hitura矿场的Outokumpu Finnmines Oy和Kemi矿场的Outokumpu Chrome Oy。介绍了用于开发基于矿石类型的专家系统的方法,并描述了在上述工厂中获得的初步结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号